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the five goals reported in The NOAA Artificial Intelligence Strategy 

released in February 2020.

• Machine learning solutions are complex and operationalizing them 

presents challenges not addressed in traditional software deployment.

• The seminal paper “Hidden Technical Debt in Machine Learning 

Systems.” explains ML models are only a small component of an ML 

solution. (Figure 1)

• Unlike traditional software, ML models are automatically created from 

training data.  Thus the data is port of the application and the rules are 

often not explainable. (Figure 2)
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The components from Figure 1 can be 

combined into three broad categories 

described in detail below.

Apply MLOps Principles to Expedite the Transition of ML Research to 

Application, Improve Reliability and Reduce Costs.

MLOps is the set of best practices for the management of model life cycle.

MLOps platforms provide a framework and tools to facilitate MLOps practices.

• Automation through pipelines

• Versioning for 

• Data - may reside on multiple systems, may not be immutable, ownership 

factors

• Models - can be retrained with new data or training approaches, deployed in 

new applications, may be subject to attack and require revisions 

• Pipelines 

• Feature Stores

• Metadata

• Testing of 

• Features and Data - identify features most significant in prediction, data 

validation

• Reliable model development 

• ML infrastructure - reproducibility, canary, stress testing, algorithm 

correctness, integration

• Experiment Tracking
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• Computational performance

• Data drift 

• Numerical stability of models

• Degradation of predictions

• Managing infrastructure

• Security
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Figure 2. Difference in traditional programming and machine learning development process

From: Sculley, D. et al., “Hidden Technical Debt in Machine Learning Systems.” NIPS 2015

The power of an MLOps platform comes from the ability to 

automate and track the orchestration of machine learning 

solutions through pipelines. Pipelines can be run 

independently or fed into other pipelines. They provide 

modularity that decouples tasks and allows for improvements 

in smaller more manageable incremental tasks. The ability to 

track processes through versioning provides repeatability and 

knowledge transfer.


